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ABSTRACT 

The term M out of N sliding window detectors refers to processes that 
determine whether there have been M successes in a sequence of N binary tri- 
als, where the window (of N trials under examination) slides along a possibly 
infinite sequence stopping when the criterion (of M successes in N succes- 
sive trials) is met. They are frequently used to model the operators of naval 
surveillance systems such as radar and sonar. When an M out of N sliding 
window detector is examining a sequence of trials it may be in one of several 
states. The state of most interest is the accepting state into which it enters 
(and remains) when it encounters a sequence of N successive trials containing 
M successes. This paper describes a generalised method for estimating the 
probability that an M out of N sliding window detector is in its accepting state 
given a sequence of probabilities representing the likelihood of success on each 
of a sequence of binary trials. 
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Evaluating the state probabilities of M out of N sliding 
window detectors 

EXECUTIVE SUMMARY 

The term M out of N sliding window detectors refers to processes that determine 
whether there have been M successes in a sequence of N binary trials, where the window 
(of N trials under examination) slides along a possibly infinite sequence stopping when the 
criterion (of M successes in N successive trials) is met. They are frequently used to model 
the operators of naval surveillance systems such as radar and sonar. This is because these 
systems are subject to false alarms and the operators use the persistence (scan-to-scan in 
the case of radar and ping-to-ping in the case of sonar) of the target echoes (as one cue) in 
distinguishing them from false alarms. As the echoes are intermittent (especially when the 
target is at extreme ranges), the operators are quite tolerant of missing echoes and might, 
for instance, only require that the echo appears on two out of three consecutive scans/pings 
(in which case they would be performing asa^ out of 3 sliding window detector). 

When an M out of N sliding window detector is exaniining a sequence of trials it 
may be in one of several states. The state of most interest is the accepting state which it 
enters when it encounters a sequence of N successive trials containing M successes and 
stays there. All other states that an M out of N sliding window detector may enter 
while examining a sequence of trials are known as non-accepting states and this includes 
the initial state which is the state that the detector is in before any trials have been 
evaluated. 

The implementation of M out of N sliding window detectors is quite simple and their 
incorporation into simulations to model sensor operators is straightforward. Within the 
simulation the appearances (or otherwise) of the echoes is determined and the result is 
fed to a simulation of the required sliding window detector which will declare a detection 
when the criterion is met and enter the accepting state. 

However, in studies of a more theoretical nature, what is known about the series of 
trials (e.g. radar sweeps or sonar pings) is not the result (positive or negative) of each 
trial but, rather, the probability that the trial would return a positive result. In these 
cases, what is required is an estimate of the probability that the sliding window detector is 
in its accepting state. A generalised (and efficient) method for solving this problem (for 
arbitrary values of M and N) is developed in this paper based on finite state automata. 
The solution is simple and easily implemented in modern computer languages. 

m 
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1    Introduction 

The term M out of N sliding window detectors refers to processes that determine 
whether there have been M successes in a sequence of N binary trials, where the window 
(of N trials under examination) slides along a possibly infinite sequence stopping when 
the criterion (of M successes in N successive trials) is met. They are frequently used to 
model the operators of naval surveillance systems such as radar and sonar (refs 1 and 
2). This is because these systems are subject to false alarms and the operators use the 
persistence (scan-to-scan in the case of radar and ping-to-ping in the case of sonar) of 
the target echoes (as one cue) in distinguishing them from false alarms. As the echoes 
are intermittent (especially when the target is at extreme ranges), the operators are quite 
tolerant of missing echoes and might, for instance, only require that the echo appears on 
two out of three consecutive scans/pings (in which case they would be performing as a 2 
out of 3 sliding window detector). 

When an M out of N sliding window detector is examining a sequence of trials it 
may be in one of several states. The state of most interest is the accepting state which it 
enters when it encounters a sequence of iV successive trials containing M successes and 
stays there. All other states that an M out of N sliding window detector may enter 
while examining a sequence of trials are known as non-accepting states and this includes 
the initial state which is the state that the detector is in before any trials have been 
evaluated. 

As will be shown in Section 2 the implementation of M out of N sliding window 
detectors is quite simple and their incorporation into simulations to model sensor operators 
is straightforward. Within the simulation the appearances (or otherwise) of the echoes is 
determined and the result is fed to a simulation of the required sliding window detector 
which will declare a detection when the criterion is met and enter the accepting state. 

However, in studies of a more theoretical nature, what is known about the series of 
trials (e.g. radar sweeps or sonar pings) is not the result (positive or negative) of each 
trial but, rather, the probability that the trial would return a positive result. In these 
cases, what is required is an estimate of the probability that the sliding window detector is 
in its accepting state. The topic of this paper is the solution of this problem. The key to 
this problem of evaluating the state probabilities of M out of N sliding window detectors 
lies in examining the methods for implementing them and to this end the next section will 
consider their implementation. 

2    Implementing M out of N sliding window 
detectors 

In order to implement an M out of N sliding window detector it is necessary to 
maintain a history of the last N — 1 trials. If the result of each trial is represented by a 
single binary digit, with 1 representing a positive trial result and 0 a negative one, then 
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the relevant history H after i trials is given by the string (of length N -1) of binary digits 

H = Ri-N+2Ri-N+3 ■ - • -Rj-i-Ri (1) 

where Rj is the binary digit representing the result of the jth. trial. For example, if N = 4, 
and the result of the last three (N — 1) trials was positive, negative and negative (in that 
order) then the history is H = 100. In order to determine if the M successful trials out 
of N consecutive trials criterion has been satisfied after the completion of a trial with a 
positive result (given that the criterion has not already been satisfied) it is necessary to 
determine the number of digits # (H) with the value 1 in the history H and if it equals 
M — 1 the criterion is satisfied. If the criterion was not satisfied (after a successful trial) 
it is necessary to update the history H in preparation for the next trial and this entails 
deleting the left most digit from H and adding a 1 to the right. For example, if H = 100 
before a successful trial that fails to satisfy the criterion then it becomes H — 001 after 
the trial. If H is considered to be the binary representation of an integer number this is 
equivalent to the integer arithmetic operation H <= (H x 2) mod 2Ar_1 + 1 where x <= y 
means that x is given the value y and i mod j is the modulus of i with respect to j. 

In the event of a negative result to a trial it is not necessary to check for the satisfaction 
of the M out of N criterion as, if it were satisfied, it would have been previously determined. 
All that is necessary is to adjust the history H in preparation for the consideration of the 
next trial. This necessitates the removal of the left most digit and the addition of a 0 to 
the right end. If if is considered to be the binary representation of an integer number this 
is equivalent to the integer arithmetic operation H ■$= (H x 2) mod 2N~l. 

Algorithm 1 Conduct binary trials until M successes are achieved in N successive trials 
accept <= false 
H ^0 
repeat 

carry out binary trial 
if the result of the binary trial is positive then 

if # (H) = (M - 1) then {M out of N criterion is satisfied} 
accept •<= true 

else 
H<=(Hx2) mod 2"-1 + 1 

end if 
else 

H <= {H x 2) mod 2N~1 

end if 
until accept = true 

Algorithm 1 gathers the ideas presented above to provide a method for conducting a 
series of binary trials until the criterion of M successes out of N successive trials is satisfied. 
Another view that can be taken of this process is that it is a finite state automaton that 
transitions from one state to another dependent on the result of a binary trial until it 
eventually enters the accepting state. In this view of the process, each possible value of 
the history H can be considered as a separate state of the automaton. Let SM,N be the set 
of such states that an M out of N sliding window may enter. In addition to the accepting 
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state there will be one state in this set for each integer that can be represented by N — 1 
binary digits minus those integers with N — 1 digits that contain M or more digits with 
the value 1 and the number of states #SM JV in the set can be shown (ref. 3) to be given 
by 

(   N-M 
J2 Tk   when M < N < IM - 1 
fc=0 

#
SM.N = 

M-l 

J2 Tk    when JV > 2M - 1 
Jfc=0 

(2) 

where 
( 2^-1 

Tk=< 
?M-i_g/M 

i=0 

N-M 

when k = 0 

when k > 0 
(3) 

In order to demonstrate this concept consider the case where M = 3 and JV = 4. There 
are 8 integers (0, 1, 2, 3, 4, 5, 6 and 7) that can be represented by 3 (i.e. JV — 1) binary 
digits and one of these (7) contains 3 (i.e. M) digits with the value 1. Let the label of each 
non-accepting state be the integer interpretation of H that is extant when the system is 
in that state and let the label of the accepting state be the * symbol. Then, using state 
transitions that are determined by the processes described in Algorithm 1, the finite state 
automaton that implements a 3 out of 4 sliding window detector is described by the state 
transition table shown in Table 1. Alternatively, it is described by the state transition 
diagram shown in Figure 1 where the nodes represent the various states and the edges 
represent the transitions.    It is this view of the system as a finite state automaton that 

From 
State 

To State 
—ve +ve 

0 0 1 
1 2 3 
2 4 5 
3 6 * 
4 0 1 
5 2 * 
6 4 * 
* * • 

Table 1: State transition table for 3 out of 4 sliding window detector 

is the basis for the evaluation of M out of JV sliding window detectors when the actual 
results of each binary trial are not known but, instead, the probabilities that each of a 
sequence of binary trials is successful is known. 
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"®-H5>J-<2>-LH;Ö W 

Figure 1: State transition diagram for 3 out of 4 sliding window detector 

3    Evaluating M out of N sliding window 
detectors 

If the notation Ps (fc) is used to represent the probability that the process is in state 
s after the fcth trial then the probability that the process is in the accepting state after 
the fcth trial is given by P* (fc). In order for the system to be in state s after the fcth trial 
either the kth. trial must have had a positive result and the system was in a state where 
it transitions to the state s after a positive result or the fcth trial had a negative result 
and the system was in a state where it transitions to state s on a negative result and, 
therefore, 

Ps (k) = PkPs
+ (k - 1) + (1 - PA) PS- (k - 1) (4) 

where PA is the probability that the fcth trial has a positive result, P+ (k — 1) is the 
probability that the system is in a state, after the (k — l)th trial, that will transition to 
state s if the fcth trial has a positive result and P~ (k — 1) is the probability that the 
system is in a state, after the (k — l)th trial, that will transition to state s if the fcth trial 
has a negative result. 

For example, in the case where M = 3 and N = 4 the positive transition probabilities 
can be determined to be 

P+(fc-l 

P+(fc-l 

P2
+(fc-l 

P3
+(fc-l 

P+(fc-l 

P+(fc-l 

P+(fc-l 

P+(fc-l 

= 0 (5) 

= P0(fc-1) + P4(fc-1) (6) 

= 0 (7) 

= Pi(fc-l) (8) 

= 0 (9) 

- P2(fc-i) (10) 

= 0 (11) 

= P3(fc-1) + P5(fc-1) + P6(fc-1)+P*(fc-1) (12) 

from Table 1 and/or Figure 1.   Similarly the negative transition probabilities can be 
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determined to be 

P0~(k-1 

P{{k-l 

P2-(k-l 

Pf(k-1 

Pf (k ~ 1 
P5-(k-l 

1 

1 

P6-(k 

= P0(fc-1) + P4(fc-1) 
= 0 

= Pl(fc-1)+P5(fc-1) 

= 0 

= P2(fc-1)+P6(fc-1) 

= 0 

= Ps(k-1) 

= P*(k-1) 

(13) 

(14) 

(15) 

(16) 

(17) 

(18) 

(19) 

(20) 

and this, in turn, allows the full set of state probability equations for a 3 out of 4 sliding 
window detector to be determined 

(21) 

(22) 

(23) 

(24) 

(25) 

(26) 
(27) 
(28) 

Po(k) =   (l-Pfc)(P0(fc-l)+p4(fc-l)) 

Pi(fc) =   p*(P0(fc-l) + P4(fc-l)) 
P2(fc) =   (l-p^iP^k-V+Psik-l)) 
Ps(fc) =   PkPi(k-l) 

PA(k) =   (l-Pk)(P2(k-l)+P6(k-l)) 

Ps(k) =   PkP2(k-l) 
Pe(k) =    (l-Pk)P3(k-l) 

P*(k) =    P*(k-l)+pk(P3(k-l)+P5(k l)+p6(fc-l)) 

which can be used to evaluate the detector when started with the following initial values: 

As the detector remains in the accepting state once it has entered that state the probability 
p* (fe) that it enters the accepting state as a result of the A;th trial is given by 

P*(k) 
P* (fc) when 0 < k < 1 
P* (k) - P* (A; - 1)   otherwise. (30) 

and this is equivalent to the probability density function for P* (fe). It can then be used to 
determine the most probable detection range(s). The set of equations needed to evaluate 
M out of N sliding window detectors with other values for M and N can be obtained by 
similar processes to that just described. 

Although they will correctly evaluate M out of N sliding window detectors, the meth- 
ods just outlined suffer from one severe disadvantage. Every time it is required to evaluate 
a sliding window detector for values of M and N that have not been previously encoun- 
tered, a new set of equations must be generated. What is required is a more general 
method that can automatically accommodate many combinations of M and N and this 
will be developed in the next section. 
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4    A General Method of Evaluation 

In order to generalise the methodology described in the previous section each possible 
state of a system will be represented by an ordered hexad (H, P, H+, H~, P+, P~), where 
H is the states identifying number, P is the probability that the system is this state, H+ 

is the identity of the state reached from this state after a positive trial result, H~ is the 
identity of the state reached from this state after a negative trial result and P+ and P~ 
are provided to hold intermediate values during the evaluation process. The set SM,N is 
the set of such hexads necessary to represent all of the states of an M out of N sliding 
window detector and the notation SM,N [j] is used to refer to the member of SM,N that 
has H = j. Where necessary, dot notation will be used to signify components of a hexad 
(e.g. the notation SM,tf \j] .P refers to the P component of the hexad SM,N \j])- 

Algorithm 2 Evaluate M out of N sliding window detector  

V* [0] .P «= 1 
for each hexad h in SM,N where h.H ^ 0 do 

h.P^O 
end for 
loop 

determine the probability p of a positive result on the current trial 
for each hexad h in SM,N do 

h.P+ <= 0 
h.P- <= 0 

end for 
for each hexad h in SA/ N do 

SMtN [h.H+] .P+ <= SM,N [h.H+] .P+ + h.P 
SM,N [h.H-] .P- <= SM,TV [h.H~] .P~ + h.P 

end for 
for each hexad h in SM,JV do 

h.P <= p (h.P+) + (1 - p) (h.P') 
end for 
wait for next trial 

end loop 

Algorithm 2 illustrates a process by which the set of hexads SM,N may be used to 
evaluate an M out of N sliding window detector. After initialising each hexad's state 
probability P to the appropriate values, it enters an infinite loop and evaluates each of 
the state probabilities once the probability of a positive result from the current trial is 
known. At any time that the system is waiting for the next trial it may be interrogated 
to determine the various state probabilities. In particular, the value of SM,N [*] P will be 
the probability that the system has successfully met the M out of N criterion based on 
the trials processed so far and is, therefore, in the accepting state. 

Algorithm 3 Create the set of hexads SM,N 

SM,JV = {(*,0,*,*,0,0)} 
Add a hexad with H = 0 to S^,^  - Algorithm 4 
SM,N [0] -P 4- 1 



DSTO-TN-0132 

In order for Algorithm 2 to be applied it is first necessary to generate the set of hexads 
SM,N and Algorithm 1 provides the key to solving this problem. Based on the information 
in that algorithm, the recursive algorithm, Algorithm 4, and Algorithm 3 can be used to 
construct the set SM,N- Algorithm 3 initialises SM,N to contain a single hexad representing 
the accepting state and then uses Algorithm 4 to add a hexad for the initial state H = 0 
to SM,N- 

Algorithm 4 Add a hexad with H = i to SM, N 

create new hexad h 
h.H<=i 
h.P<=0 
if # (i) = {M - 1) then 

h.H+ <= * 
else 

h.H+ <= (i x 2) mod 2JV~1 + 1 
end if 
h.H~ ^(tx2) mod 2N~1 

SM,JV <= Sjvf.jv U {h} 
if a hexad with H = h.H+ does not exist in SM,N then 

Add a hexad with H = h.H+ to SM,N  — Algorithm 4 
end if 
if a hexad with H = h.H~ does not exist in SM,JV then 

Add a hexad with H = h.H~ to SM,N  — Algorithm 4 
end if 

The recursive nature of Algorithm 4 then ensures that hexads for all of the other states 
that an M out of N detector requires are added to SM,N with their state probabilities set 
to 0. Finally Algorithm 3 sets the state probability for state 0 to 1 ensuring that SJ^AT is 
in a valid configuration (with the sum of the state probabilities equal to 1). The number 
*SM,JV of hexads in the set SM,N generated by these algorithms is given by 

*SM,N = *SM,N (31) 

(see Equation 2) and may be quite large. 

5    A General and Optimal Method of Evaluation 

From Algorithm 2, it can be readily determined that the time taken to evaluate the 
system each time a trial is processed will be proportional to the number *SM,AT of hexads 
in SM,N (which is given by Equation 2 and can be very large depending on the values of 
M and N). Therefore, if it is possible to reduce the number of hexads in SM,N, without 
altering the value obtained for SM,N [*] -P after each trial is processed, then the evaluation 
process can be made more efficient. That this is possible, at least in the case where M = 3 
and N = 4, can be determined by examining Table 1 and Figure 1 and observing that 
two states are effectively equivalent if their transition states are identical. In the case 
where M = 3 and N = 4 the states 0 and 4 both transition to state 0 on a negative trial 
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result and to state 1 on a positive trial result. They are, therefore, effectively equivalent 
and can be merged into a single state to form a new finite state automaton, described in 
Table 2 and Figure 2, that is also capable of determining when there have been 3 trials 

From 
State 

To State 
—ve +ve 

0 0 1 
1 2 3 
2 0 5 
3 6 * 
5 2 • 

6 0 * 
• • * 

Table 2: State transition table for an optimal 3 out of 4 sliding window detector 

0,1 

Figure 2: State transition diagram for an optimal 3 out of 4 sliding window detector 

with positive results out of 4 successive trials. Additionally, an equivalent set of equations 
to Equations 21 to 28 

Po(fe) = (l-pk)(P0(k-l)+P2(k-l) + P6(k-l)) (32) 

Pi(k) = Pk(Po(k-l)) (33) 

P2{k) = (l-Pk)(Pl(k-l)+P5(k-l)) (34) 

Ps(k) = PkPi(k-l) (35) 

P5(k) = pkP2(k-l) (36) 

Pe(k) = (l-Pk)P3(k-l) (37) 

P*(fc) = P*(fc-l)+p*(Pj(fc-l) + P>(fc-l)+A(fc-l)) (38) 

could be generated from this new automaton in order to evaluate 3 out of 4 sliding window 
detectors (if desired). 

In general, the process of reducing a finite state automaton to its optimal form will 
be more complex than this example and several iterations may be required.   Take, for 
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example, the case where M = 5 and N = 6. The finite state automaton generated using 
the methods described in Section 2 is given in Table 3(a) and contains 31 states. Among 
these states there are 11 pairs of equivalent states (16 and 0, 17 and 1, 18 and 2, 19 and 
3, 20 and 4, 21 and 5, 22 and 6, 24 and 8, 25 and 9, 26 and 10, and 28 and 12) and if 
each of these pairs is merged into a single state (taking the smaller of the state labels 
as the label for the new state) then the automaton described in Table 3(b) is obtained. 
Note that, even though all the equivalent pairs of states were merged into single states, 

From 
State 

To State 
—ve +ve 

0 0 1 
1 2 3 
2 4 5 
3 6 7 
4 8 9 
5 10 11 
6 12 13 
7 14 15 
8 16 17 
9 18 19 

10 20 21 
11 22 23 
12 24 25 
13 26 27 
14 28 29 
15 30 * 
16 0 1 
17 2 3 
18 4 5 
19 6 7 
20 8 9 
21 10 11 
22 12 13 
23 14 * 
24 16 17 
25 18 19 
26 20 21 
27 22 * 
28 24 25 
29 26 * 
30 28 • 

From 

State 
To State 
—ve +ve 

0 0 1 
1 2 3 
2 4 5 
3 6 7 
4 8 9 
5 10 11 
6 12 13 
7 14 15 
8 0 1 
9 2 3 

10 4 5 
11 6 23 
12 8 9 
13 10 27 
14 12 29 
15 30 * 
23 14 * 
27 6 * 
29 10 * 
30 12 • 

From 
State 

To State 
—ve +ve 

0 0 1 
1 2 3 
2 4 5 
3 6 7 
4 0 1 
5 2 11 
6 4 13 
7 14 15 

11 6 23 
13 2 27 
14 4 29 
15 30 • 

23 14 • 

27 6 • 

29 2 * 
30 4 * 

From 
State 

To State 
—ve +ve 

0 0 1 
1 2 3 
2 0 5 
3 6 7 
5 2 11 
6 0 13 
7 14 15 

11 6 23 
13 2 27 
14 0 29 
15 30 * 
23 14 • 

27 6 • 

29 2 • 

30 o • 

(a) (b) (c) (d) 

Table 3: State transition tables for 5 out of 6 sliding window detectors 



DSTO-TN-0132 

there are still four pairs of equivalent states (namely 8 and 0, 9 and 1, 10 and 2, and 12 
and 4) in this new automaton. If the same process is repeated on this new automaton 
the automaton described in Table 3(c) is obtained and this automaton also contains an 
equivalent pair (4 and 0) of states. After one more iteration of the process the automaton 
described in Table 3(d) is obtained and (finally) this is an optimal automaton with no 
pairs of equivalent states. 

If an iterative process based on the above discussion is applied to the set of hexads SM,N 

produced by Algorithm 3 then the optimal set S'M N (that which represents an automata 
for implementing M out of N sliding window detector in the minimal number of states) 
can be generated. S'MN can the be substituted for SM,N hi Algorithm 2 to provide an 
optimal algorithm for evaluating M out of N sliding window detectors. The number of 
hexads in this optimal set is given by 

(   N-M 

#0' ÜM,N 

S(£i)(V)   «^^M-, 
M-l 

E 
I    k=0 

(39) 

v> i   M \ (N-M\       ,      „     ftl,    , 

which in most instances is much smaller than that given by Equation 31 for #SM,AT- How- 
ever, the time taken to generate this optimal set (using this process) will be proportional 
to &SM,N rather than *S'M N and what is required are versions of Algorithms 3 and 4 that 
generate the optimal set directly. 

Algorithm 5 Create the optimal set of hexads S', M,N 

S'M,;V = {(*>0,*,*,0,0)} 

Add a hexad with H = 0 to the optimal set S'M N  - Algorithm 6 
S'M>N[0].P^1  

Algorithms 5 is a modified version of Algorithm 3 which sidesteps the problem by 
shifting the responsibility to Algorithm 6 which is the modified version of Algorithm 4. 
The primary modifications that are present in Algorithm 6 are based on the fact that the 
determination of the values for H+ and H~ are the key to the problem as they determine 
which hexads will be created. If an algorithm can be devised that can determine the 
identifying history H of the hexad that represents (as an equivalent) some other history i 
then the optimal set can be produced directly. 

Algorithm 7 performs this function. It is based on the observation that, when equiv- 
alent pairs of hexads (/ii,/i2) occur in SM,N (where the convention of listing pairs in 
descending order of identifying histories is followed), the member of the pair hi with the 
largest identifying history h\.H has a component h\.H+ whose value is not * and is smaller 
than the identifying history (i.e. hi.H+ ^ * and h\.H+ < h\.H) and that the identifying 
history h,2-H of the other member of the pair is equal to the integer portion of hi.H+/2. 
Therefore, in order to determine the smallest equivalent history to some history i, Algo- 
rithm 7 first determines whether i shifts to the accepting state * after a positive result in 
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Algorithm 6 Add a hexad with H = i to the optimal set S'M N 

create new hexad h 
h.H<=i 
ft.P<=0 
if # (i) = (M - 1) then 

h.H+ <= * 
else 

n+ <= ((i x 2) mod 2N~1 + l) 
h-H+ <= (Smallest equivalent history to n+ in an M of N automaton)  - Algorithm 7 

end if 
n~ <= ((ix2) mod2JV"1) 
h.H~ <= (Smelliest equivalent history to n~ in an M of N automaton)  - Algorithm 7 
SM,JV <= SM,AT U {^} 
if a hexad with H = h.H+ does not exist in S'M N then 

Add a hexad with H = h.H+ to the optimal set S'MN - Algorithm 6 
end if 
if a hexad with H = h.H~ does not exist in S'MN then 

Add a hexad with H = h.H~ to the optimal set S'MN - Algorithm 6 
end if 

Algorithm 7 Smallest equivalent history to i in an M of N automaton 
if # (i) = (M -1) then " : 

return i 
else 

n-t=((ix 2) mod 2N~1 + l) 
n' <= (Smallest equivalent history to n in an M of N automaton)  - Algorithm 7 
if n' < i then 

return the integer portion of n'/2 
else 

return i 
end if 

end if 

which case it is the smallest equivalent state to itself. If this is not the case then the history 
n of the state to which i would shift on a successful trial in the non-optimal automaton 
is determined and then a recursive call to Algorithm 7 is made to determine the smallest 
equivalent history n' to n which is the state which i will shift to in the optimal case. This 
recursive call provides the equivalent to the exhaustive iterations in the method described 
above. The value of n' is compared to i and if it is smaller then i will have an equivalent 
state in the optimal set of states and the history of that equivalent state is returned. 

6    Example of Application 

Consider the case where a surface ship equipped with an active sonar set (where the 
sonar operator can be considered a 3 out of 5 sliding window detector) is approaching 
a submarine and it is required to determine the probability that the ship detects the 
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submarine before some given range (for example, see ref. 4). In order to solve this problem 
using the methodology described in this paper the following information is required: 

• the probability of detecting the submarine on a single sonar ping as a function of 
the range between the ship and the submarine, 

• the time interval between successive sonar pings, and 

• the positions and velocities of the ship and submarine. 

For the purposes of this example, the probability of detection on a single ping (as a function 
of range) will be that illustrated at Figure 3. This is a fictional and stylised version of a 
situation often encountered. There are two range bands where the probability of detection 

10 15        20        25 
Range (nmi) 

Figure 3: The probability, p, of detection on a single ping as a function of range 

is significant: 

• a convergence zone between (approximately) 27 and 37 nautical miles (nmi), and 

• a direct propagation zone inside (approximately) 9 nmi. 

Outside these two zones the probability of detection is roughly equivalent to the false 
alarm probability which has been set to (an unrealistically high) 0.05 for the purposes 
of illustration. In order to maintain a (convenient) linear relationship between time and 
range it will be further assumed that the ship and submarine are on a collision course with 
a closing rate of 15 knots. In order to take advantage of the possibility of convergence 
range detections, the time interval between pings will be set to that which provides an 
unambiguous maximum range of 40 nmi (approximately 99.4 seconds) with the first ping 
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Figure 4: The probabilities, p*, that satisfaction of the 3 blips in 5 pings criterion is met 
at a given range and, P+, that satisfaction of the criterion occurs by a given range 

occurring at 40 nmi. The probability (P*) that the 3 blips out of 5 pings criterion is met by 
a given range (as a function of that range) is shown at Figure 4 along with the probability 
(p*) that the satisfaction of the criterion occurs at a given range. For the convenience 
of the reader the samples of the blip/ping ratio used are also shown on the diagram as 
individual points. It should be noted that p* is bimodal. 

7    Conclusion 

The algorithms described in this paper for evaluating M out of N sliding window 
detectors are simple and efficient. Their implementation in most computer languages 
should be simple and straightforward. Applications include modelling of naval surveillance 
radar and sonar systems. 
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